Expression of p15(ink4b) gene during megakaryocytic differentiation of normal and myelodysplastic hematopoietic progenitors.

نویسندگان

  • L Teofili
  • M Martini
  • A Di Mario
  • S Rutella
  • R Urbano
  • M Luongo
  • G Leone
  • L M Larocca
چکیده

In myelodysplastic syndrome (MDS), the expression of the cyclin-dependent kinase inhibitor p15(ink4B) (p15) is frequently decreased because of the aberrant methylation of the gene promoter; p15 is normally up-regulated during megakaryocytic differentiation. It was hypothesized that p15 methylation and deregulation of gene expression contribute to defective megakaryocytopoiesis in patients with MDS. Here it is shown that the increasing autocrine production of TGF-beta1 stimulates megakaryocytic differentiation in normal CD34(+) cells and that p15 mediates, at least in part, this effect. This TGF-beta1-dependent pathway is altered in MDS CD34(+) progenitors because of p15 methylation. The demethylating agent 2-deoxyAZAcytidin can restore the normal demethylated state of the p15 gene and increase its expression. Nevertheless, MDS CD34(+) cells only poorly differentiate to the megakaryocytic lineage. These findings suggest that p15 methylation occurs in a neoplastic clone with a profound defect of cell proliferation, survival, and differentiation that cannot be overcome by using a demethylating drug.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief report Expression of p15ink4b gene during megakaryocytic differentiation of normal and myelodysplastic hematopoietic progenitors

In myelodysplastic syndrome (MDS), the expression of the cyclin-dependent kinase inhibitor p15ink4B (p15) is frequently decreased because of the aberrant methylation of the gene promoter; p15 is normally up-regulated during megakaryocytic differentiation. It was hypothesized that p15 methylation and deregulation of gene expression contribute to defective megakaryocytopoiesis in patients with MD...

متن کامل

Gene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells

Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. M...

متن کامل

Gene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells

Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. ...

متن کامل

Characterization of hematopoietic lineage-specific gene expression by ES cell in vitro differentiation induction system.

The continuous generation of mature blood cells from hematopoietic progenitor cells requires a highly complex series of molecular events. To examine lineage-specific gene expression during the differentiation process, we developed a novel method combining LacZ reporter gene analysis with in vitro hematopoietic differentiation induction from mouse embryonic stem cells. For a model system using t...

متن کامل

Cooperative Stimulation of Megakaryocytic Differentiation by Gfi1b Gene Targets Kindlin3 and Talin1

Understanding the production and differentiation of megakaryocytes from progenitors is crucial for realizing the biology and functions of these vital cells. Previous gene ablation studies demonstrated the essential role of the transcriptional repressor Gfi1b (growth factor independence 1b) in the generation of both erythroid and megakaryocytic cells. However, our recent work has demonstrated th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 98 2  شماره 

صفحات  -

تاریخ انتشار 2001